Kilonova Theory

Kenta Hotokezaka (University of Tokyo)

Collaboration with M. Tanaka, D. Kato, G. Gaigalas, Y. Tarumi, N. Domoto, E. Nakar

Outline

- Introduction
- Rapid neutron capture & Kilonova power
- Early Kilonova & absorption lines
- Kilonova Nebular Phase & James Webb Space Telescope (JWST)

Introduction: Kilonova

Concept:

- "Kilonova" is an electromagnetic counterpart of neutron star mergers (Li & Paczynski 98).
- *Radioactivity* in the neutron-rich ejecta powers kilonvoae. (e.g. Metzger+10).
- Lanthanides have many permitted lines in the optical - IR, which makes kilonvoae extremely red. (e.g., Kasen+13, Tanaka & KH 13)

Introduction: Kilonova

Concept:

- "Kilonova" is an electromagnetic counterpart of neutron star mergers (Li & Paczynski 98).
- *Radioactivity* in the neutron-rich ejecta powers kilonvoae. (e.g. Metzger+10).
- Lanthanides have many permitted lines in the optical - IR, which makes kilonvoae extremely red. (e.g., Kasen+13, Tanaka & KH 13)

Observation history:

- The first kilonova candidate in 2013, followed a *gamma-ray burst* 130603B. (Tanvir et al 2013)
- One kilonova after the 1st *gravitational-wave merger* <u>GW170817</u>. (Metzger 17, Margutti & Chornock 21, Nakar 20 for reviews)
- As of 2023, ~ 10 possible kilonovae after gamma-ray bursts.
- (Troja 23 for a review)

A Kilonova in GW170817

Arcavi+17, Coulter+17, Lipunov+17, Soares-Santos+17, Tanvir+17, Valenti+17, Kasliwal+17, Drout+17, Evans+17, Utsumi+17

The kilonova is much fainter and faster than supernovae.

Knowing the merger times and locations from GW greatly helps to find kilonovae.

A Goal of kilonova science: where elements come from?

1 H	Element Origins															2 He		
3 Li	4 Be							3				5 B	6 C	7 N	8 O	9 F	10 Ne	
11 Na	12 Mg											13 Al	14 Sí	15 P	16 S	17 Cl	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
87 Fr	88 Ra																	
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			89 Ac	90 Th	91 Pa	92 U												
Merging Neutron Stars Dving Low Mass Stars							Exploding Massive Star Exploding White Dwarf						s Big Bang s Cosmic Ray Fission					

lased on graphic created by Jennifer Johnson

In the next decade, we try to answer "which ones are produced in mergers and how much?"

We need more atomic data

- Kilonovae are explosion of heavy elements.
- They are bright in the infrared.
- We don't really know strong lines of heavy elements in the infrared.
- We also need recombination & collision strengths of heavy elements.

Outline

- Introduction
- Rapid neutron capture & Kilonova power
- Early Kilonova & absorption lines
- Kilonova Nebular Phase & James Webb Space Telescope (JWST)

Li & Paczynski 98, Kulkarni 05, Metzger + 10, Barnes & Kasen 13, Tanaka & KH 13

- Powered by radioactivity of r-process nuclei.
- The peak luminosity ~ 10³-10⁴ x nova.
- Spectrum ~ quasi-thermal.
- Atomic lines dominate the opacity (photon absorption).

Rapid neutron capture (R-) process in merger ejecta

© Jonus Lippuner

The energy budget of the Kilonova in GW170817

- The light curve ~ the β -decay heating rate.
- Ejecta mass: ~ 0.05Msun.
- The photospheric velocity: ~0.1-0.3c.
- The photospheric temperature: T=5000K -> 2000K.

Outline

- Introduction
- Kilonova power
- Early Kilonova and absorption lines
- Kilonova Nebular Phase & James Webb Space Telescope (JWST)

Early Phase of kilonvoa

• Photospheric phase

Kilonova ejecta

 Lanthanides significantly enhance the opacity in the optical-IR (e.g., Kasen+13, Tanaka & KH 13)

Spectrum of the kilonova GW170817

Observational facts

- The early emission (< 3 days) is characterized well by a blackbody with an absorption line at 8000Å.
 - The late emission (>3 days) peaks around near IR.

Spectrum of the kilonova GW170817

Observational facts

- The early emission (< 3 days) is characterized well by a blackbody with an absorption line at 8000Å.
- The late emission (>3 days) peaks around near IR.

Unsolved questions

- How is the blue blackbody emission produced? Do we need lanthanide free ejecta?
- Does the near IR emission > 3 days require lanthanide-rich ejecta?
- Is the line feature at 8000Å Sr II or He I? (e.g. Watson+19, Tarumi, KH et al 23)
- How about the other line feature?

Strong IR lines in r-process rich star

Kilonova vs R-rich star

The structure around 1.5 µm is likely due to Ce III.

Outline

- Introduction
- Rapid neutron capture & Kilonova power
- Early Kilonova & absorption lines
- Kilonova Nebular Phase & James Webb Space Telescope (JWST)

Kilonova Nebular Phase

- Photons escape without absorption, i.e., tau<1.
- Kilonova radiation may be dominated by emission lines.
- Although it is fainter, good chance to identify more elements.

Importance of Fine-structure lines in kilonova nebula

- Fine structure levels are predominantly excited.
- Lower-lying fine structure levels decay through forbidden lines (M1 lines).
- These lines are in the JWST band.

Fine-structure lines in kilonova nebula

Singly ionized, the first fine structure level

- Heavy elements have fine-structure lines at ~ 1 30 μm (JWST band).
- M1 lines can carry away a significant fraction of radioactive heat.

Kilonova nebula modeling

• M1 line list

- Non-thermal electron and ionization solver
- Energy levels from NIST and Blaise & Wyart 1992 for actinides.
- LS coupling with the single configuration approximation.

• We are developing line lists for heavy elements and ionization solver.

Kilonova M1 line spectrum: 40 days

- Synthetic nebular M1 spectra with the accurate line location.
- JWST may be able to resolve the emission lines for kilonovae.

Kilonova late spectrum: 10 days

Kilonova in GW170817 (KH+23)

Kilonova late spectrum: 10 days

Kilonova in GW170817 (KH+23)

Planetary Nebula (s-process, Madonna+18)

- The peak at 2.1µm may be Te III.
- It has been detected in planetary nebulae (Madonna+18).

Kilonova late spectrum: 10 days

Kilonova in GW170817 (KH+23)

Solar r-process abundance (KH+18)

- The peak at 2.1µm may be Te III.
- It has been detected in planetary nebulae (Madonna+18).
- Te is among the most abundant r-process elements.

Preliminary News: A 'kilonova' in long GRB 230307A

- The light curve and spectrum resemble the kilonova GW170817.
- An emission line at 2.1 µm -> [Te III]?
- An extremely red continuum -> lanthanides?

We need more atomic data

- Astrophysicists will do:
 - Try to find kilonovae (1 yr-1?) and obtain more data.
 - not easy because they are faint, rapidly fade, and infrared.
 - Try to interpret the spectral structure by improving the models.
 - also not easy because lines are broaden, lack of atomic data, and incompleteness of the models.

We need more atomic data

- Astrophysicists will do:
 - Try to find kilonovae (1 yr-1?) and obtain more data.
 - not easy because they are faint, rapidly fade, and infrared.
 - Try to interpret the spectral structure by improving the models.
 - also not easy because lines are broaden, lack of atomic data, and incompleteness of the models.
- What astrophysicists need from atomic physicists:
 - Oscillator strengths of heavy elements in the infrared.
 - Ce III and La III lines are most prominent in kilonovae.
 - Atomic data for plasma modelings.
 - recombination and collision rates (Te, W, Se seem important).

Summary

- Kilonova is an electromagnetic counterpart of neutron star mergers.
- The kilonova in GW170817 evolves quickly from 5000K to 2000K.
- Line id is challenging because of large Doppler broadening and blending.
- The strongest absorption is around 0.8µm (Sr II or He I). A weaker feature around 1.5µm (Ce III).
- A strong emission line at 2.1µm in late times (>10 day), likely [Te III] 2.1µm.
- A kilonova seems to follow a long GRB 230307A. James Webb observation points to a strong emission at 2.1µm, [Te III] 2.1µm?
- We need oscillator strengths, collision strengths, recombination rate for better modelings.