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* People:
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Milan Ding (PhD)
Ruairi Shannon (PhD — Oct 2023)

* Focus:

* Measure atomic data
* High-resolution, high-accuracy
fundamental properties of atoms
* Use high resolution spectroscopy to
measure:
* Transition wavelengths
* Energy Levels

+ Transition probabilities, oscillator
strengths, f-values

* Nuclear effects - hyperfine & isotope
structure

* Regularly collaborate with other
experimental and theoretical groups.
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Why Atomic Physics?

» Atomic data is vital for many fields:
+ Astrophysical spectra
 Laboratory plasmas
*  Medical
* Industrial
« Fundamental physics in general

* 99% of observable universe in plasma form

« Atomic data is vital to understanding the processes
involved

* Very high accuracy needed

* no other field of science places such higher
demands on atomic data

[1] Leckrone, D. S. et al, 1993, PhysS, T47, 149-156
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Why Atomic Physics?

Atomic data is vital for many fields:
* Astrophysical spectra
* Laboratory plasmas
*  Medical
* Industrial
* Fundamental physics in general

* 99% of observable universe in plasma form
* Atomic data is vital to understanding the processes
involved
* Very high accuracy needed
* no other field of science places such higher
demands on atomic data
* Much existing data:
*  Measured a long time ago
» Using lower resolution techniques than are
available now
« Our group focuses on astrophysically important
elements:

* lron group (scandium to copper)
* Rare earth

[1] Leckrone, D. S. et al, 1993, PhysS, T47, 149-156
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Why Atomic Physics?

 Atomic data is vital for many fields:
 Astrophysical spectra
 Laboratory plasmas
*  Medical
* Industrial
« Fundamental physics in general

* 99% of observable universe in plasma form
« Atomic data is vital to understanding the processes
involved
* Very high accuracy needed
* no other field of science places such higher
demands on atomic data
* Much existing data:
*  Measured a long time ago
+ Using lower resolution techniques than are
available now

« Our group focuses on astrophysically important
elements:

* Iron group (scandium to copper)
* Rare earth

[1] Kramida, A. et al ,2021, NIST Atomic Spectra Database (version 5.9), [Online]

NIST Atomic Spectra Database - Levels Holdings
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I Fourier Transform Spectroscopy (FTS)

Grating alone

I FTS currently in progress




IMPERIAL COLLEGE LONDON SPECTROSCOPY GROUP | ASOS-14 | CHRISTIAN CLEAR

Fourier Transform Spectroscopy (FTS)
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Fourier Transform Spectroscopy (FTS)
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Fourier Transform Spectroscopy (FTS)

Carrier gas out

MgF, Beamsplitter

Max. path difference

20cm

Resolving power

2 x 10% at 200 nm

Maximum resolution

0.025 cm™!

= — ] Ballast Stabilised current
" resistors power supply
Water
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|
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\’R \ IC VUV FTS
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Source selector \
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Imperial College VUV FTS — experimental setup

Range

74,000 — 12,000 cm™!
(135 -850 nm)

Wavenumber accuracy

+0.001 cm?
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Fourier Transform Spectroscopy - Advantages

* High Resolving Power:

» Doppler-limited resolving power — fully

resolve 3d grou

line at 50,000cm"

(widths are few hundredths of a

wavenumber).

High enough for nuclear effects such as

Hyperfine and Isotope Structure.
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Fourier Transform Spectroscopy - Advantages
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» Doppler-limited resolving power — fully

resolve 3d grou

line at 50,000cm"

(widths are few hundredths of a

wavenumber).

High enough for nuclear effects such as

Hyperfine and Isotope Structure.

SNR

Intensity (arbitrary units)

400

300

200

100

100

SNR

Il !

217.775
Wavelength (nm)

AR

FTS

\
N—

217780

L

J

Grating

\

".' IR

I ]
217.6 2178
Wavelength (nm)

1
218.0




IMPERIAL COLLEGE LONDON SPECTROSCOPY GROUP | ASOS-14 | CHRISTIAN CLEAR

Fourier Transform Spectroscopy - Advantages

High Resolving Power:

» Doppler-limited resolving power — fully
resolve 3d group line at 50,000cm-"
(widths are few hundredths of a

wavenumber).

. 100} 9:12 nm section of Higher resolution is
* High enough for nuclear effects such as | g, | Nspectum. clearly seen in this
Hyperfine and Isotope Structure. : o Fouro
%) Transform
[ ]

Spectrometer. w

°
ity (arbitrary units)

N Intensi

The same section of Ni spectrum recorded by
the world-class, high resolution grating spectrograph
NIVS at NIST (USA). Lines are unresolved and blended.
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Fourier Transform Spectroscopy - Advantages

400 + 100 FTS

* High Resolving Power:

» Doppler-limited resolving power — fully A
resolve 3d group line at 50,000cm-" alt |
(widths are few hundredths of a -
wavenumber). - L)L

 High enough for nuclear effects such as _ 2T o
Hyperfine and Isotope Structure.

100
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wavenumber accuracy: Ll 1 1
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Fourier Transform Spectroscopy - Advantages

High Resolving Power:

» Doppler-limited resolving power — fully
resolve 3d group line at 50,000cm-"
(widths are few hundredths of a
wavenumber).

« High enough for nuclear effects such as
Hyperfine and Isotope Structure.

Linear wavenumber scale and high
wavenumber accuracy:

« Atleast 1 part 107

Slowly-varying photometric response:

 Reliable and accurate intensity
calibration.

* Comes from the fact that all elements
are measured at once therefore small
drifts in source won't affect relative
Intensities.

Intensity (normalised scale)

o
o)

©
o

©
IS

o
)

0.0 -
3.5x104

— ---- Response

| —— Measure d Dy spectru
r L/

Standard Do Spectrf
U

| PSR S S 1

4.0x10%

4.5x104 5.0x104 5.5x104

Wavenumber (em™1)

6.0x10%



IMPERIAL COLLEGE LONDON SPECTROSCOPY GROUP | ASOS-14 | CHRISTIAN CLEAR

Fourier Transform Spectroscopy - Advantages

High Resolving Power:
» Doppler-limited resolving power — fully

resolve 3d group line at 50,000cm-"! 180007 g . Comm 3d W aF 1
(widths are few hundredths of a o] €™ 4 @G @ THOET
wavenumber). _ 2

* High enough for nuclear effects such as 140000~

Hyperfine and Isotope Structure.

Linear wavenumber scale and high
wavenumber accuracy:

« Atleast 1 part 107

Slowly-varying photometric response:

 Reliable and accurate intensity
calibration.

« Comes from the fact that all elements
are measured at once therefore small
drifts in source won't affect relative

Intensities.

Large and variable free spectral range:
» V. important for large-scale studies.

Term diagram of Co Il [1]

[1] Pickering, J. C. et al., 1998, ApJS, 117, 261-311
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Fourier Transform Spectroscopy - Advantages

High Resolving Power:

» Doppler-limited resolving power — fully

« High enough for nuclear effects such as

resolve 3d group line at 50,000cm-"
(widths are few hundredths of a
wavenumber).

Hyperfine and Isotope Structure.

Linear wavenumber scale and high
wavenumber accuracy:

At least 1 part 107.

Slowly-varying photometric response:

Large and variable free spectral range:

Reliable and accurate intensity
calibration.

Comes from the fact that all elements
are measured at once therefore small
drifts in source won't affect relative
Intensities.

V. important for large-scale studies.

Which other tools are available?

« Grating spectroscopy
» Wide spectral ranges
» Lower resolving powers
* Lower accuracies

» Fabry-Perot interferometer and Laser
spectroscopy
» High resolution and accuracy
» Line-by-line techniques

* Theoretical calculations
» Extensive but with large
uncertainties
* Provide essential data for
experimentalists as well
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Fourier Transform Spectroscopy - Advantages

High Resolving Power:

» Doppler-limited resolving power — fully
resolve 3d group line at 50,000cm-"
(widths are few hundredths of a
wavenumber).

« High enough for nuclear effects such as
Hyperfine and Isotope Structure.

Linear wavenumber scale and high
wavenumber accuracy:

« Atleast 1 part 107

Slowly-varying photometric response:

 Reliable and accurate intensity
calibration.

* Comes from the fact that all elements
are measured at once therefore small
drifts in source won't affect relative
Intensities.

Large and variable free spectral range:
» V. important for large-scale studies.

[1] Leckrone, D. S. et al, 1993, PhysS, T47, 149-156
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Fourier Transform Spectroscopy - Advantages

High Resolving Power:

» Doppler-limited resolving power — fully

« High enough for nuclear effects such as

resolve 3d group line at 50,000cm-"
(widths are few hundredths of a
wavenumber).

Hyperfine and Isotope Structure.

Linear wavenumber scale and high
wavenumber accuracy:

At least 1 part 107.

Slowly-varying photometric response:

Large and variable free spectral range:

Reliable and accurate intensity
calibration.

Comes from the fact that all elements
are measured at once therefore small
drifts in source won't affect relative
Intensities.

V. important for large-scale studies.

Which other tools are available?

« Grating spectroscopy
» Wide spectral ranges
» Lower resolving powers
* Lower accuracies

» Fabry-Perot interferometer and Laser
spectroscopy
» High resolution and accuracy
» Line-by-line techniques

* Theoretical calculations
» Extensive but with large
uncertainties
* Provide essential data for
experimentalists as well
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Sources — Hollow Cathode Discharge

To vacuum

pump .
T water cooling l

Glass insulator

Gas flow

Anode Hollow Cathode Anode

High voltage and Carrier Gas

Radiation to
spectrometer
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Sources — Hollow Cathode Discharge

To vacuum . .
pump High voltage and

T water cooling l

Glass insulator

Radiation to
spectrometer

Gas flow

Anode Hollow Cathode Anode

Noble Gas ions sputter Metal atoms
carrier gas W cathode B excited and
ionised material ionised in plasma

» High stability

neutral and . Water—.cooled:
ST * High currents

singly-ionised * Reduction of
i Doppler widths

Predominantly
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Sources — Penning Discharge

R l ! T « Same excitation method as HCD with
z addition of static magnetic field
e S0 ) v J
T F T * Magnetic field confines plasma,
: o."/ . leading to higher ionisations
" hoder ] % Predominantly singly- and
Mil 1 Agﬂ"u doubly-ionised species

(b) PDL plasma with argon  (c) PDL plasma with neon gas. (d) PDL plasma with
gas. neon-helium gas mixture.
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Wavelengths B
» Record spectra. Coadding n
spectra improves SNR by v/n

nsity (SNR)

60 [~

Inte

* Fitting — Voigt or Centre of
Gravity

220 L

* Extracted Parameters: L

» Peak position (o in cm™) Wercnmter
« Width of line (FWHM)
* Area under curve — intensity
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120 |~

Wavelengths
» Record spectra. Coadding n
spectra improves SNR by v/n

nsity (SNR)

Inte

Fitting — Voigt or Centre of

Extracted Parameters:

60 [~

40 |-

Gravity ol

140 —

220 L

* Peak position (o in cm™)
« Width of line (FWHM)
* Area under curve — intensity

Wavenumber uncertainties:

* Both a statistical uncertainty, from
fitting, and a calibration uncertainty.

 FTS wavelength uncertainty: few
parts in 108

1 1
52328 523285 52329 52329.5 52330 52330.5 52331 523315

-1
‘Wavenumber / cm

JFWHM X Rgpec

O00gtqt =

SNR
_ FWHM FWHM
VN x SNR |2 X SNR

N = number of points
across the line
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Wavelengths - Calibration

* Small change in path of laser and
source light through FTS gives linear
wavenumber shift

Ocorr = (1 + Keff)o-obs

 Match lines to standards (usually Ar II)
or to lines in previously calibrated
spectra to give K«

—5.8 1

Aojo (1077)

NiArDH.aln calibrated to Whaling_Ar_ll.cIn

+ Lines used (26)

+ Lines rejected (0)

=== std_dev limits T
— Kerr
+
+
10T il + 1
T T+ T 10 +
+ +
+ + + +
+ 1 +
+ +
20000 21000 22000 23000

Wavenumber (cm™1)

kef = -6.1590E-07
Calibration Unc. = 2.6393E-09
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Wavelengths - Calibration

* Small change in path of laser and
source light through FTS gives linear
wavenumber shift

Ocorr = (1 + Keff)o-obs

 Match lines to standards (usually Ar II)
or to lines in previously calibrated
spectra to give K«

- Total calibration uncertainty is then
sum of all matched line differences:

80cqiip = 50_prev + Z Ok;
{

* Finally get total uncertainty of a
measured line;

— 2 2
80iotal = \/5Ustat + 5O-calib

NiArDH.aln calibrated to Whaling_Ar_ll.cIn

—5.81 + Lines used (26)
""""""" + Linesrejected (0) TTTTTTTTTTTTT
-39 === std_dev limits T
— Ker
-6.0 1
7 +4+
o —-6.1 + +
26 1 i+ h 1T
2 ¥ ¥
<0] -6.2 + + + +
+ 1 +
—6.3 + +
—-6.4
20000 21000 22000 23000
Wavenumber (cm™1)
Kefr = -6.1590E-07
Calibration Unc. = 2.6393E-09
IR VIS VUV
Arll
Standards
g
Ni-Ar
Spectrum
(NiArDH)
b 2
Ni-He
NiHeCH 7 Spectrum | NiHeEH
g (NiHeDH) g
NiHeBC NiHeFH
NiHeBH NiHeGH
NiHeAH NiHeHH

Example wavenumber calibration schema for Ni |l
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Energy Levels — Term Analysis

NO air correction applied to wavelengths.

° Derlvatlon Of ener?y |eve|S from INTENSITY CALIBRATION APPLIED.
I

4 line wavenumber peak width dmp eq width itn H tags identification

Obse rved Spectral nes 26 25215.293478 .4397E+03  329.75 0.2514 0.728TE+06 -6 O L no id
27 25220.643674 .4226E+02 94.49 0.1981 0.1934E+05 -7 0 L no id

28 25248.743844 .9900E+01 87.39 0.0000 0.3577E+04 -4 0 L no id

29 25251.205389 .5493E+01 71.68 0.0000 0.1618E+04 -3 0 L no id

[} E n e rgy |eve | S g |Ve ‘the fu n d a me nta | 30 25258.484244 .2T00E+02 99.26 0.0000 0.1083E+05 -6 0 L no id
31 25276.719294 .7098E+01 148.17 1.0000 O.6035E+04 -6 O L no id

ato m I C StrUCtU re Of natu re 32 25301.578648 .1512E+02 98.28 0.0000 0.5546E+04 -8 0 L no id
33 25315.038229 .2976E+02 89.09 0.0000 O.971TE+04 -4 0 L no id

34 25316.864134 .8872E+01 103.22 0.0000 0.3348E+0D4 -3 0 L no id

35 25338.581944 .1T724E+02 94.76 0.0000 O.5833E+04 -4 0 L no id

36 25339.154692 .1118E+02 92.43 0.5325 0.4568E+04 -5 0 L no id

37 25347.119072 .6398E+01 88.02 0.0000 0.1994E+04 -8 0 L no id

38 25353.933531 .3200E+02 97.97 0.2494 0.1220E+05 -7 0 L no id

39 25387.717456 .6439E+01 87.09 0.0000 0.1918BE+04 -4 0 L no id

40 25502.477609 .8526E+01 82.64 0.1060 0.2227TE+04 -8 0 L no id

41 25533.097702 .7833E+01 103.02 0.1369 0.2452E+04 -7 0 L no id

42 25548.764946 .9801E+01 100.17 0.0000 0.2T40E+04 -5 0 L no id

43 25553.247984 .4252E+01 119.30 0.0000 0.1403E+0D4 -5 0 L no id

44 25554.286312 .4420E+01 80.97 0.0000 O.9880E+03 -6 O L no id
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Energy Levels — Term Analysis

* Derivation of ener?'y levels from
|

observed spectral lines B0 £ o ad aF
. 1 @m? v 2o &P aH 329 |
* Energy levels give the fundamental 160000 ap 7 —
atomic structure of nature I e

140000
* Ritz wavelengths often more accurate -

59
. 1 —
than observed lines. | 20000 4%5: 4d5pE 4d= 4& -

* Ritz vv_avelen[gths also provide data of 100000+ SOE o s
experimental accuracy for lines not 1 4 L
observed in the lab: 800007

. - 4p g [ CJ
© very weakl.lnes o 60000 w [ ]
* parity-forbidden transitions : ] 1

* Levels also form one of the key inputs _ .

. .. 8 ) 3P 4s e R
to semi-empirical calculations: 20000- 4| [ =
- Allowing the “fine-tuning” of calculated : ﬂ ] Coll 3d(“D)nl
eigenvalues to the experimental energy 0
levels resulting in more accurate ,
eigenvectors and therefore transition Term diagram of Co Il [1]
probabilities.

[1] Pickering, J. C. et al., 1998, ApJS, 117, 261-311
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Energy Levels — Term Analysis

Observed N Compare > Identified |
linelist linelists lines
Unidentified Search for new
l Data input/output lines levels and lines

l Processes

Predicted
lines

v

Fits: improve
level accuracy

< Improved

v

levels

Energy (10° cm™)

125

-_—
N 0 ~ o
o o (6)} o
1 1 1 |

o
1 L

Ni Il 3d® (ML) ni




IMPERIAL COLLEGE LONDON SPECTROSCOPY GROUP | ASOS-14 | CHRISTIAN CLEAR

Energy Levels — Term Analysis

Observed
linelist

l Data input/output

l Processes

Predicted
lines

v

Compare
> p

linelists

v

Unidentified
lines

Identified |

lines

Fits: improve
level accuracy

Search for new
levels and lines

< Improved

v

levels

Energy (10° cm™)

125

-_—
N 0 ~ o
o o (6)} o
1 1 1 |

o
1 L

3d°

Ni Il 3d® (ML) ni

Spectral term analysis is like a complicated jigsaw, where:

The pieces never fit exactly - lines have finite uncertainties

Some pieces fit spuriously - accidental wavelength coincidences
Some crucial pieces are missing - missing lines (weak or blended)
There are pieces belonging to a completely different puzzle - impurities
And the picture on the box is not very clear - theory as a guide
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Transition Probabilities — Branching Fractions

Spontaneous Absorption Stimulated
Emission Emission
E, —@ @ 3
g B. — g2 C 4
2 12 — 3 21
Vio Vi Vi g1 87Thv12
Ay B> B,

Einstein coefficients
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Transition Probabilities — Branching Fractions

Spontaneous Absorption Stimulated
Emission Emission
e, —® = 5
gz C
Vi2 B12 — 3 A21
Viz Vio Viz g1 87Thv12
3 O
Ay B, By
Einstein coefficients
Ao — BF54
Decay to multiple levels 21 (D
= A I EW.
NSEAA4 BF, =<2 —_ 21
A Yibi X EWy
— /N
W ‘ ‘ ‘ BF = Branching fraction
! EW = Line equivalent width
F, JAVAVAY 4 >

- T = Level lifetime (s)
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Transition Probabilities — Intensity Calibration

Branching fraction:

I4 _ EW,4
il X, EWy,

BF21 —

Relative intensities = intensity

calibration

D, from 1650 — 3600A, W at longer
Many sources of uncertainty:

Lifetimes

Lamp calibration
Alignment

Separation of spectral lines
Missing lines
Self-absorption

» Typical log(gf) uncertainties 5% - 10%
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Nuclear Effects

* Hyperfine Structure:

* Orders of magnitude smaller
than fine structure

» Caused by interactions of the
nuclear dipole moment (1)
with atomic magnetic and
electric fields

* Affects isotopes with odd
mass numbers

[1] Blackwell-Whitehead, R. J. et al., 2005, ApJS., 157, 402-409
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Nuclear Effects

* Hyperfine Structure:

* Orders of magnitude smaller
than fine structure

» Caused by interactions of the
nuclear dipole moment (1)
with atomic magnetic and
electric fields

* Affects isotopes with odd
mass numbers

* |sotope Structure:
* Additional neutrons give:
» Mass effect
+ Volume effect

« Component intensities are
proportional to relative
abundance

[1] Rosberg, M., et al., 1993, MNRAS, 262, L1-L5
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Nuclear Effects

* Well resolved in experiment, but
blended in stellar spectra i

- Wavelengths shifted 5

» Systematic errors in width — lead i

0.80 | Mnl —— Solar Profile (Kitt Peak

to incorrect abundances _ i0, -, | tawatmyrone

0.75

FTS able ‘to de‘term|ne HFS A 752675 I 752I7.00 I 75217.25 I 752I7.50 I 752I7.75
Wavenumber, cmi’

(o)
Va | U eS tO few /O Solar and laboratory Mn | spectral line comparison

12 F T T LE— 16 + Observed Spectrum -------- 4
single—line FWHM }— 25P3 - b5D4 transition
- AN (816283Nj —58Nj) 14 + Unidentified Line .
<— AA(%ONi-%8Ni)
1.0 121 1
g 10 4
=
g 0.8 - all isotopes % 8r ’, 7
= 7]
< solar spectrum:
[ only ®Nj Delbouille et al. (1973)
= only §16284Nj
0.6 -
f(%8Ni)/f(%Ni)/f(616284Ni) = 0.68/0.26,/0.06
04 meteoritic values
. ! ) ] . ] . ]
7414.2 7414.4 7414.6 7414.8

10581.5 10582 10582.5 10583 10583.5 10584
1

Wavelength (&)

. . Wavenumber, cm’
Isotope structure in Ni | [1]

[1] Sneden, C. et al, 2014, Phys, 89, 11 Blending of HFS Mn Il and unidentified line [2]

[2] Liggins, F.S. et al., 2021, ApJS, 252, 10-22
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Recent Successes

Ni Il

58 new energy levels identified and 489 energy levels revised with at least an
order of magnitude reduction in uncertainty. Ritz wavelengths of forbidden lines.

Theoretical calculations undertaken with Raassen & Uylings.
Clear et al., ApJS, 261, 35, (2022)

Fe lll

First FTS measurements in the VUV. Revision of > 300 levels. 456 Ritz wavelengths
to be used as wavelength standards in the UV-VUV (for the calibration of spectra

of hot sta I’S). Concepcion F. PhD Thesis, Imperial College London, (2022)

Mn I

New accurate data for 614 energy levels and 6019 lines. New Ritz wavelengths for
1130 forbidden transitions.

Liggins et al., ApJS, 252, 10, (2021) & Liggins et al., ApJ, 907, 69, (2021)

Coll

Magnetic hyperfine interaction constants for 292 energy levels, only 28 were
previously known. Characterises broadening of stellar absorption lines, essential

for accurate abundance analyses. ' o
Ding & Pickering, ApJS, 251, 1, (2020)

Nd IlI

Fourier transform spectra of Nd-Ar lamps from the VUV to IR measured over
22,000 lines. Term analysis of these transitions produced over 240 new energy

levels with over 900 transitions identified as Nd Il , , .
Ding et al., in preparation (2023)
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Recent Successes

DOUBLY-IONISED IRON : NEW

ACCURATE WAVELENGTHS AND

ENERGY LEVELS
Fe lll

Florence Concepcion

THE SPECTRUM AND ENERGY
LEVELS OF DOUBLY IONISED

NEODYMIUM
Nd [l

Milan Ding
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Summary

* Line identifications and accurate line
wavelengths

- accurate to at least 1 partin 107 (0.15mA
at 1500A, 0.001 cm-1)

* Atomic energy levels
» Typically, 0.001-0.006 cm™ uncertainty

- Hyperfine and isotope structure
parameters (line broadening)
« Fitting to a few %
* Oscillator strengths, transition
probabilities, f-values
* accurate to <10%

» Able to measure from VUV to visible
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Summary

* Line identifications and accurate line
wavelengths

- accurate to at least 1 partin 107 (0.15mA
at 1500A, 0.001 cm-1)

* Atomic energy levels
» Typically, 0.001-0.006 cm™ uncertainty

* Hyperfine and isotope structure
parameters (line broadening)

« Fitting to a few %

* Oscillator strengths, transition
probabilities, f-values

e accurate to <10%
» Able to measure from VUV to visible

* New telescopes means IR is increasing
IN Importance

» Conclusion: Imperial needs an IR FTS!
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New Instrument Bruker IFS 125HR

* Line identifications and accurate line
wavelengths

- accurate to at least 1 partin 107 (0.15mA
at 1500A, 0.001 cm-1)

* Atomic energy levels
» Typically, 0.001-0.006 cm™ uncertainty

* Hyperfine and isotope structure
parameters (line broadening)

« Fitting to a few %

* Oscillator strengths, transition ,
probabilities, f-values Max. path difference 50 cm

e accurate to <10%
» Able to measure from VUV to visible

* New telescopes means IR is increasing Maximumiresolution 0.018 cm™*
IN Importance

» Conclusion: Imperial needs an IR FTS!

Resolving power 1 x 10° at 1000 nm

Range ~400—-1720 nm

Wavenumber accuracy +0.001 cm™?
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Future work

New transition probabilities in the UV. Lifetimes from experimental laser induced

Nill fluorescence (LIF) measurements.

Ni Il Extension of energy level analysis beyond FTS lower wavelength limit. Grating
plates have been recorded in collaboration with NIST.

Mn | FT and grating spectra have been recorded across the IR-visible-VUV region. A

full energy level analysis is planned.

(In collaboration with Univ. Valladolid) FT spectra have been recorded and
Nd [l | intensity calibrated to allow the determination of branching fractions for
transition probabilities.
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Future work

New transition probabilities in the UV. Lifetimes from experimental laser induced

Nill fluorescence (LIF) measurements.

Ni Il Extension of energy level analysis beyond FTS lower wavelength limit. Grating
plates have been recorded in collaboration with NIST.

Mn | FT and grating spectra have been recorded across the IR-visible-VUV region. A

full energy level analysis is planned.

(In collaboration with Univ. Valladolid) FT spectra have been recorded and
Nd [l | intensity calibrated to allow the determination of branching fractions for
transition probabilities.

We are open to data requests
and collaborations!

Please come and discuss your atomic data
needs with us.
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