

Fundamental Interactions and Beyond with X-ray Spectroscopy of Exotic Atoms

Nancy Paul Laboratoire Kastler Brossel ASOS 2023 July 12th, 2023

Bound state QED—a rich landscape

Bound state QED—a rich landscape

High precision comparison between theory and experiment possible for low-Z systems (H, He, D)

Strong-field QED transitions in the ~keV regime, no direct laser spectroscopy

- QED effects become relatively more important
- QED theory non-perturbative (Z α)
- Theory exists but experiments difficult to test higher-order QED contributions

Frontier via complementary methods Ex. g-factors, high-intensity lasers, ...

*QED untested beyond 1st order effects, 2nd order QED is ppm effect and currently untested!

*QED tested to threshold of 3rd order effects

Precision spectroscopy of highly-charged ions (HCI)

Theory-experiment comparison of QED effects in two-electron atoms (He-like) for transitions to the ground state (Lyman-alpha)

Figure adapted from P. Indelicato, Topical Review: QED tests with highly-charged ions, Journal of Physics B 52 (2019) 232001

ASOS 2023

Highest precision x-ray spectroscopy (2 keV—200 keV)

\rightarrow crystal spectrometers

- Analyse x rays based on Bragg diffraction from crystal lattice
- Requires precise knowledge of crystal structure and dynamical diffraction theory

$$\begin{array}{c} n\lambda = 2dsin(\theta_{Bragg}) \\ \swarrow \\ \text{X-ray} \\ \text{Wavelength} \end{array} \begin{array}{c} \text{Crystal lattice} \\ \text{Spacing} \end{array} \begin{array}{c} \text{Measured} \\ \text{Bragg angle} \end{array} \end{array}$$

The Source "SIMPA" for highly-charged ion production

- Direct connection to plasma, 50µm thick Be window •
- In the plasma the ions are trapped in the space charge of the electrons ($\sim 10^{11} \text{ e}/\text{cm}^3$), \sim few eV trapping depth
- Intense source, provides access to forbidden transitions, narrow linewidths •

The Paris Double Crystal Spectrometer

- SiIII crystals from NIST, lattice spacing (d) known to 10-8
- Angular encoder for second axis: Heidenhain RON 905 with AWE 1024 interpolator →0.2" of arc angular accuracy
- Detector : LAAPD (large area avalanche photodiode) cooled at -10°C

width : DCS response function

width : intrinsic line width Doppler broadening DCS response function

DCS Recent Results

Impact of He-like S M1 measurement

- Now 2 data points with ppm accuracies in this Z region, important for analyses of He-like QED agreement (Chantler 2012, 2014)
- Complementary to studies of He-like U at GSI (experiment E125)

Contribution	$1s^{2} {}^{1}S_{0}$	$1s2s \ {}^3S_1$	Transition
ΔE_{Dirac}	-3495.0044	-874.5000	2620.5044
$\Delta E_{ m int}$	270.4822	80.9665	-189.5157
$\Delta E_{1 ext{ el}}^{ ext{QED}}$	0.7562	0.1014	-0.6548
$\Delta E_{2 \text{ el}}^{\text{QED}}$	-0.0715	-0.0110	0.0605
$\Delta E_{\rm h.o.}^{ m QED}$	0.0009	0.0002	-0.0007
$\Delta E_{ m rec}$	0.0563	0.0137	-0.0426
Theo. [40]	-3223.7803	-793.4292	2430.3511 (3)
Theo. [41]			2430.35208 (89
Exp. (this work)			2430.3685 (97

ASOS 2023

Limitations with HCI : Nuclear physics!

Limitations with HCI : Nuclear physics!

Strong-field QED with exotic atoms

Strongest field QED \rightarrow Highest sensitivity

$$m_{\mu} \sim \frac{200}{1} m_{e} - \frac{1}{r_{\mu}} \sim \frac{1}{200} r_{e} - \frac{1}{200} r_{e} - \frac{1}{100} r_{e} - \frac{1}{1$$

Strong-field QED with exotic atoms

$$m_{\mu} \sim \frac{200}{1} m_{e} - \frac{1}{r_{\mu}} \sim \frac{1}{200} r_{e} - \frac{1}{200} r_{e} - \frac{1}{100} r_{e} - \frac{1}{1$$

- Heavy exotic particle \rightarrow small Bohr radius \rightarrow strong electric field strength
- Higher order QED effects magnified and become measurable with new techniques

PAX theory paradigm—N. Paul et al, PRL 126 (2021) First proof-of-principle with muonic atoms—T. Okumura et al, PRL 130 (2023)

Strong-field QED with exotic atoms

Strong field QED
X Nuclear effects ≥ QED
effects

Atom	Transition	Transition energy	1 st order QED	2 nd order QED	Nuclear effects
H-like U	Lyman α1	~100 keV	3x10 ⁻³	1x10 ⁻⁵	2x10 ⁻³
antiprotonic-Xe	n=12→n=11	~100 keV	7x10 ⁻³	6x10 ⁻⁵	1x10 ⁻⁵

QED x 3-6

Nuclear effects / 100

Strong-field QED with muonic atoms

LKB

First experiments with muonic atoms at J-PARC

- **5-year accepted scientific program** at J-PARC muon facility in Japan (2020-2025)
- QED tests=precision x-ray spectroscopy of Rydberg states in muonic atoms

HEATES Collaboration: RIKEN, JAEA, JAXA, KEK, Osaka University, Rikkyo University, Tohoku University, Tokyo Metrolopolitan University, NIST, CNRS

ASOS 2023

LKB

Key technology

- High energy resolution ($\Delta E/E \sim 10^{-4}$)
- High efficiency (~10⁻⁴)

ASOS 2023

Transition Edge Sensing (TES) µcalorimeter (NIST)

Key technology : Transition Edge Sensing microcalorimeter

ASOS 2023

HEATES TES @ J-PARC D2

Experimental setup—details

LKB

Key technology—TES x-ray detector

Transition Edge Sensing (TES) µcalorimeter (NIST, Boulder, CO, USA)

Quantum Sensing Division

Figures from Ullom and Bennett 2013

TES calibration

- Pixel-by-pixel energy calibration

ASOS 2023

• Continuous calibration lines from x-ray gun

$$5g_{9/2} - 4f_{7/2}$$

0.4 atm	0.9 atm
6297.06	6297.05
0.06	0.06
0.13	0.13
0.07	0.07
0.02	0.01
0.11	0.11

Theory and Sensitivity Okumura et al, PRL 130 (2023)

Theoretical Contributions	eV		$5g_{9/2}-4f_{7/2}$		
(3g972→41772) Vac. Pol. (1st order)	-2.34061	Transition energy and uncertainties (eV)	0.1 atm	0.4 atm	0.9 atm
Self-energy (1st order)	0.0015	Measured energy Statistical error Systematic error: Total	6297.13 0.07 0.13	6297.06 0.06 0.13	6297.05 0.06 0.13
Vac. Po. (2nd order)	-0.0212	(1) Calibration (2) Low-energy tail	0.07	0.07	0.07
Finite nuclear size	-0.00031	(3) Thermal crosstalk	0.11	0.02	0.01

spectrum of muonic Fe with

ASOS 2023

T. Okumura et al., Phys. Rev. Lett. 127, 053001 (2021).

Muonic atom cascade and electronic transitions

ASOS 2023

Next step....QED with antiprotons

Bohr radius

Even stronger field QED!

Next step....QED with antiprotons

Even stronger field QED!

Next step....QED with antiprotons

QED with antiprotons (precision methods) x (antimatter)

Largest BSQED effects!

The $\overline{p}AX$ project—antiprotonic Atom X-ray spectroscopy

ASOS 2023

Even stronger field QED!

$ar{p}AX$ at ELENA

« Extra Low ENergy Antiprotons » Beams of slow antiprotons since August 2021

$\bar{p}AX$ in detail

The $\bar{p}AX$ physics program

Transition (n _i →n _f)	Appx. Transition energy	1 st order QED	2 nd order QED	Nuclea
	(keV)			effects
²⁰ Ne (6→5)	30	4 E-3	3 E-5	2
⁴⁰ Ar (6→5)	100	5 E-3	5 E-5	1
⁸⁴ Kr (9→8)	100	5 E-3	5 E-5	1
¹³² Xe (10→9)	170	5 E-3	5 E-5	2
¹⁸⁴ W (12→11)	180	5 E-3	5 E-5	2

Highest field system ever accessed in the laboratory !

$\overline{p}AX$ firsts

- Study second-order QED effects across $10 \le Z \le 74$ ٠
- Achieve 10⁻⁵ experimental precision for heavy exotic atom spectroscopy ٠

Perspectives: Strong interaction studies, exotic physics searches

The $ar{p}AX$ next steps

Test setup at GBAR

- Full simulations and design of cyclotron trap and vacuum solution
- Simulation and measurement of annihilation background
- In beam test with prototype TES at ELENA (2025)

of annihilation background ES at ELENA (*2025*)

And now lets use the idea backwards... For nuclear physics !

Nuclear properties

Determinations of nuclear RMS charge radii

- For Z < 3: Laser spectroscopy of muonic atoms, limited by nuclear theory
- For Z > 6:

Measured x-rays from muonic atoms using solid-state detectors. 10<Z: limited by theory. Z<10: limited by experiment (resolution).

• For Z = 3 - 5, and others:

Electron scattering, less accurate and systematics usually NOT under control

• For Z = 6

E(2P-1S)~75 keV, measured with crystal spectrometer. Limited by resolution ~75 eV

The QUARTET experiments

PAUL SCHERRER INSTITUT

The Heidelberg Metallic magnetic calorimeter (MMC)

maXs-30 mounted on coldfinger of a dry dilution fridge

PIE1 beamline at PSI, continuous ~50kHz μ⁻/s

Picture courtesy of the MIXE collaboration

The QUARTET collaboration

Who we are:

* Spokespersons: npaul@lkb.upmc.fr, benohayon@physics.technion.ac.il

ASOS 2023

Frederik Wauters

Ben Ohayon*

The QUARTET collaboration

Who we are:

Loredana Gastaldo Andreas Fleischmann

Quantum Sensors group

Ab. Initio. Nuclear theory

ULU III CAULIC ALUITIS

Petr Navratil

* Spokespersons: npaul@lkb.upmc.fr, benohayon@physics.technion.ac.il

ASOS 2023

derik Wauters dolf Pohl

TECHNION Israel Institute

of Technology

en Ohayon*

(U LEUVEN

T. Cocolios

Sketch of test experiment and rates

First test beam in October 2023 µ-^{6,7}Li, µBe, µ-¹⁰B

ASOS 2023

CF Combining isotope shifts between 10⁻⁴ electronic and muonic atoms to search for new lepton-neutron interactions 10⁻⁶ • Best limits come from Hydrogen-Deuterium pair. Z enhancement favors heavier pairs. 3[−]10^{−8} Novel measurements of bound electron g-**10**⁻¹⁰ factors in H-like ions limited by muonic isotope shifts **10**⁻¹² **10**⁰ 10-1

T. Sailer et. al., Nature 606 (2022)

- World-leading precision x-ray spectroscopy at LKB for strong-field QED tests
- Exotic atoms offer a new way to probe high-field QED by avoiding the problems associated with nuclear physics
- New quantum sensor detector technologies make precision studies of exotic atoms possible
- Experiments ongoing with **muonic atoms** at JPARC, Ne, Ar, Xe
- New experimental program, pAX, with antiprotonic atoms for BSQED
- New experimental program, QUARTET, with muonic atoms at PSI for charge radii.

SUPPLEMENT

What are radii good for?

First application, with MaXs-30 (10 eV resolution up to 60 keV)

- •Li/Be/B absolute radius \rightarrow calibrate entire chains, test nuclear calculations inc. ⁷Li-⁷Be and (future) ⁸Li-⁸B mirrors
- •⁶Li-⁷Li and ¹⁰B-¹¹B isotope shifts (can be determined with higher accuracy) \rightarrow compare with optical IS to test many-body QED (mostly recoil) and search for new physics.
- •Upcoming optical determinations of absolute radii for helium-like Li to C (Wuhan, Mainz). Important cross check and strong test for new physics beyond isotope shifts.

All limited by reference

ASOS 2023

Perspectives

Pileup correction

Total calibration spectrum at 0.1 atm

52 T. Okumura et al, IEEE Transactions on Applied Superconductivity **31**, 1-4 (2021)

Energy shift (t_{muon}-t_{x-ray})

Pileup correction

53 Dynamical Response of Transition-Edge Sensor Microcalorimeters to a Pulsed Charged-Particle Beam, T. Okumura, T. Azuma, D.A. Bennett, P. Caradonna, I.H. Chiu, W.B. Doriese, M.S. Durk

ASOS 2023

Energy shift (tmuon-tx-ray)