Improvements in Oscillator Strengths and their Impact on Interstellar Abundances and Depletions

Adam M. Ritchey

ASOS14 - Paris, July 11, 2023

HD 147888 (ρ Oph D)

ρ Ophiuchi

ASOS14 - Paris, July 11, 2023

For optically thin absorption:

$$W_{\lambda} = \frac{\pi e^2}{m_e c^2} N \lambda^2 f$$

 W_{λ} : equivalent width N: column density λ : transition wavelength f: oscillator strength

ASOS14 - Paris, July 11, 2023

For optically thick absorption, the equivalent width varies as a function of the column density according to a "curve of growth."

ASOS14 - Paris, July 11, 2023

For species that represent the dominant ionization stage of their element in neutral diffuse clouds (i.e., I.P. > 13.6 eV), we define the gas-phase elemental abundance:

 $\log (X/H) = \log N(X) - \log N(H_{tot}).$

The "depletion" is then determined by comparing the abundance to a cosmic standard (e.g., the Sun or local B stars):

 $[X/H] = \log (X/H) - \log (X/H)_{\odot}.$

The "missing" atoms are presumed to be locked up in interstellar dust grains.

ASOS14 - Paris, July 11, 2023

Element depletion behaviors are modelled adopting the parameterization of Jenkins (2009):

 $[X/H] = B_X + A_X(F_* - z_X).$

 A_X : depletion "slope" B_X : depletion at $F_* = z_X$ F_* : sight-line depletion factor

ASOS14 - Paris, July 11, 2023

Element depletion behaviors are modelled adopting the parameterization of Jenkins (2009):

 $[X/H] = B_X + A_X(F_* - z_X).$

 A_X : depletion "slope" B_X : depletion at $F_* = z_X$ F_* : sight-line depletion factor

ASOS14 - Paris, July 11, 2023

Element depletion behaviors are modelled adopting the parameterization of Jenkins (2009):

 $[X/H] = B_X + A_X(F_* - z_X).$

 A_X : depletion "slope" B_X : depletion at $F_* = z_X$ F_* : sight-line depletion factor

ASOS14 - Paris, July 11, 2023

Beam-foil experiments with the Toledo Heavy Ion Accelerator (THIA):

- 330 kV electrostatic positive ion accelerator
- Danfysik Model 911A Universal Ion Source
- Magnetically-selected ions are accelerated and steered toward thin carbon foils with thicknesses of 2.1 to 2.5 μ g cm⁻².
- Emission lines are analyzed with an Acton 1 m normal incidence vacuum ultraviolet monochromator

Panoramic View of the Toledo Heavy Ion Accelerator:

ASOS14 - Paris, July 11, 2023

Beam-foil experiments with the Toledo Heavy Ion Accelerator (THIA):

- 330 kV electrostatic positive ion accelerator
- Danfysik Model 911A Universal Ion Source
- Magnetically-selected ions are accelerated and steered toward thin carbon foils with thicknesses of 2.1 to 2.5 μ g cm⁻².
- Emission lines are analyzed with an Acton 1 m normal incidence vacuum ultraviolet monochromator

ASOS14 - Paris, July 11, 2023

Lifetimes determined through analysis of decay curves.

For example, for Ge II $\lambda 1237$, the lifetime of the $4s^24d \ ^2D_{3/2}$ level yields an oscillator strength of 0.872 ± 0.113 .

Other commonly used *f*-values for Ge II λ 1237:

1.23 (Biémont et al. 1998; Morton 2000; Cashman et al. 2017) 0.8756 (Morton 1991)

ASOS14 - Paris, July 11, 2023

Lifetimes determined through analysis of decay curves.

For example, for Ge II $\lambda 1237$, the lifetime of the $4s^24d^2D_{3/2}$ level yields an oscillator strength of 0.872 ± 0.113 .

Other commonly used *f*-values for Ge II λ 1237:

1.23 (Biémont et al. 1998; Morton 2000; Cashman et al. 2017) 0.8756 (Morton 1991)

ASOS14 - Paris, July 11, 2023

Discovered a previously undetected interstellar line of Pb II at 1203.6 Å in co-added HST spectra.

By comparing the line strength to the known Pb II $\lambda 1433$ feature, we derived an empirical *f*-value ratio of $f_{1203}/f_{1433} = 2.34 \pm 0.43$.

ASOS14 - Paris, July 11, 2023

Beam-foil experiments with THIA confirm our results based on interstellar spectra.

We find oscillator strengths of 0.321 ± 0.034 for Pb II $\lambda 1433$ and 0.75 ± 0.03 for Pb II $\lambda 1203$.

Other commonly used *f*-values for Pb II λ 1433:

0.4518 (Safronova et al. 2005; Cashman et al. 2017) 0.869 (Migdalek 1976; Morton 2000)

ASOS14 - Paris, July 11, 2023

ASOS14 - Paris, July 11, 2023

Dust depletions seen along low-depletion sight lines (with $F_* \approx 0$) likely represent the resilient cores of dust grains that emerge from evolved stars and SNe.

Depletions associated with high-depletion sight lines (with $F_* \approx 1$) result from the growth of dust grains in cold interstellar clouds.

ASOS14 - Paris, July 11, 2023

Dust depletions seen along low-depletion sight lines (with $F_* \approx 0$) likely represent the resilient cores of dust grains that emerge from evolved stars and SNe.

Depletions associated with high-depletion sight lines (with $F_* \approx 1$) result from the growth of dust grains in cold interstellar clouds.

ASOS14 - Paris, July 11, 2023

Dust depletions seen along low-depletion sight lines (with $F_* \approx 0$) likely represent the resilient cores of dust grains that emerge from evolved stars and SNe.

Depletions associated with high-depletion sight lines (with $F_* \approx 1$) result from the growth of dust grains in cold interstellar clouds.

ASOS14 - Paris, July 11, 2023

Dust depletions seen along low-depletion sight lines (with $F_* \approx 0$) likely represent the resilient cores of dust grains that emerge from evolved stars and SNe.

Depletions associated with high-depletion sight lines (with $F_* \approx 1$) result from the growth of dust grains in cold interstellar clouds.

ASOS14 - Paris, July 11, 2023

Dust depletions seen along low-depletion sight lines (with $F_* \approx 0$) likely represent the resilient cores of dust grains that emerge from evolved stars and SNe.

Depletions associated with high-depletion sight lines (with $F_* \approx 1$) result from the growth of dust grains in cold interstellar clouds.

ASOS14 - Paris, July 11, 2023

Unusual Results for P and Cl

ASOS14 - Paris, July 11, 2023

Unusual Results for P and Cl

ASOS14 - Paris, July 11, 2023

New experimental *f*-value for P II λ 1301 determined using beam foil techniques with THIA: 0.0196 ± 0.002 (Brown et al. 2018).

Other commonly used *f*-values for P II $\lambda 1301$:

0.0210 (Froese Fischer et al. 2006; Cashman et al. 2017) 0.0207 (Tayal 2003) 0.0127 (Hibbert 1988; Morton 2003) 0.01725 (Livingston et al. 1975; Morton 1991)

ASOS14 - Paris, July 11, 2023

New experimental *f*-value for P II λ 1301 determined using beam foil techniques with THIA: 0.0196 ± 0.002 (Brown et al. 2018).

Other commonly used *f*-values for P II λ 1301:

0.0210 (Froese Fischer et al. 2006; Cashman et al. 2017) 0.0207 (Tayal 2003) 0.0127 (Hibbert 1988; Morton 2003) 0.01725 (Livingston et al. 1975; Morton 1991)

ASOS14 - Paris, July 11, 2023

We then derived an empirical *f*-value for P II λ 1532 through profile fitting of the λ 1301 and λ 1532 lines in HST spectra. Our result: *f* = 0.00737.

Other commonly used *f*-values for P II $\lambda 1532$:

0.00701 (Froese Fischer et al. 2006; Cashman et al. 2017) 0.00793 (Tayal 2003) 0.00303 (Hibbert 1988; Morton 2003) 0.007610 (Savage & Lawrence 1966; Morton 1991)

We then derived an empirical *f*-value for P II λ 1532 through profile fitting of the λ 1301 and λ 1532 lines in HST spectra. Our result: *f* = 0.00737.

Other commonly used *f*-values for P II $\lambda 1532$:

0.00701 (Froese Fischer et al. 2006; Cashman et al. 2017) 0.00793 (Tayal 2003) 0.00303 (Hibbert 1988; Morton 2003) 0.007610 (Savage & Lawrence 1966; Morton 1991)

ASOS14 - Paris, July 11, 2023

New experimental *f*-values obtained with THIA for several UV transitions in Cl I: 0.0473 ± 0.0036 for $\lambda 1004$, 0.0385 ± 0.0011 for $\lambda 1094$ (Alkhayat et al. 2019).

Other *f*-values for Cl I λ1004: 0.04427 (Oliver & Hibbert 2013; Cashman et al. 2017) 0.0514 (Sonnentrucker et al. 2006) 0.1577 (Kurucz & Peytremann 1975; Morton 1991)

Other *f*-values for Cl I λ1094: 0.03224 (Oliver & Hibbert 2013) 0.0396 (Sonnentrucker et al. 2006) 0.0166 (Biémont et al. 1994; Morton 2003) 0.0011 (Ojha & Hibbert 1990; Morton 1991)

Adam M. Ritchey

ASOS14 - Paris, July 11, 2023

New experimental *f*-values obtained with THIA for several UV transitions in Cl I: 0.0473 ± 0.0036 for $\lambda 1004$, 0.0385 ± 0.0011 for $\lambda 1094$ (Alkhayat et al. 2019).

Other *f*-values for Cl I λ1004: 0.04427 (Oliver & Hibbert 2013; Cashman et al. 2017) 0.0514 (Sonnentrucker et al. 2006) 0.1577 (Kurucz & Peytremann 1975; Morton 1991)

Other *f*-values for Cl I λ1094: 0.03224 (Oliver & Hibbert 2013) 0.0396 (Sonnentrucker et al. 2006) 0.0166 (Biémont et al. 1994; Morton 2003) 0.0011 (Ojha & Hibbert 1990; Morton 1991)

Adam M. Ritchey

ASOS14 - Paris, July 11, 2023

New experimental *f*-values obtained with THIA for several UV transitions in Cl I: 0.0473 ± 0.0036 for $\lambda 1004$, 0.0385 ± 0.0011 for $\lambda 1094$ (Alkhayat et al. 2019).

Other *f*-values for Cl I λ1004: 0.04427 (Oliver & Hibbert 2013; Cashman et al. 2017) 0.0514 (Sonnentrucker et al. 2006) 0.1577 (Kurucz & Peytremann 1975; Morton 1991)

Other *f*-values for Cl I λ1094: 0.03224 (Oliver & Hibbert 2013) 0.0396 (Sonnentrucker et al. 2006) 0.0166 (Biémont et al. 1994; Morton 2003) 0.0011 (Ojha & Hibbert 1990; Morton 1991)

Adam M. Ritchey

ASOS14 - Paris, July 11, 2023

Updated Results for P and Cl

ASOS14 - Paris, July 11, 2023

Updated Results for P and Cl

ASOS14 - Paris, July 11, 2023

Transitions in nee	d of expe	rimental c	confirmati	ion of <i>f</i> -value:
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
	M00			
As II λ1263	0.259			

ASOS14 - Paris, July 11, 2023

Transitions in nee	d of expe	rimental c	confirmati	ion of <i>f</i> -value:
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
inte	rstellar al	osorption	(Lugger e	t al. 1982)
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
	M00			
As II λ1263	0.259			

ASOS14 - Paris, July 11, 2023

Transitions in nee	d of expe	rimental c	onfirmati	on of <i>f</i> -value:
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
	theory (I	Kurucz 19	98)	
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
	M00			
As II λ1263	0.259			

ASOS14 - Paris, July 11, 2023

Transitions in nee	d of expe	rimental o	confirmat	ion of <i>f</i> -value:
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
		theory (Toner & I	Hibbert 2005)
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
	M00			
As II λ1263	0.259			

ASOS14 - Paris, July 11, 2023

Transitions in need of experimental confirmation of <i>f</i> -value:				
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
theo	ory (Kuru	cz 1989)		
	M00			
As II λ1263	0.259			
		1		a the state

ASOS14 - Paris, July 11, 2023

Transitions in nee	d of expe	rimental c	confirmat	ion of <i>f</i> -value:
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
inte	rstellar ab	osorption	(Jenkins &	& Tripp 2006)
	M00			
As II λ1263	0.259			

ASOS14 - Paris, July 11, 2023

Transitions in need of experimental confirmation of <i>f</i> -value:				
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
	theo	ory (Cassi	idy et al. 2	2016)
	M00			
As II λ1263	0.259			
		the second		
				State of the second

ASOS14 - Paris, July 11, 2023

Transitions in need of experimental confirmation of <i>f</i> -value:				
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
	2 50 4		o (-	
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
quasar a	bsorption	lines (Bo	issé & Be	rgeron 2019)
	M00			
As II λ1263	0.259			
		and the second second		

ASOS14 - Paris, July 11, 2023

Transitions in nee	d of expe	rimental o	confirmat	ion of <i>f</i> -value:
	M91	M03	C17	
Mn II λ1197	0.157	0.217	0.148	
Mn II λ1199	0.106	0.169	0.116	
Mn II λ1201	0.088	0.121	0.083	
	M91	JT06	C17	BB19
Ni II λ1317	0.1458	0.0571	0.0818	0.0596
Ni II λ1370	0.1309	0.0588	0.0811	0.0616
	M00			
As II λ1263	0.259			
theory (I	Biémont e	et al. 1998)	

ASOS14 - Paris, July 11, 2023

Enhanced Arsenic Abundance?

ASOS14 - Paris, July 11, 2023

Summary/Conclusions

- Accurate oscillator strengths are crucial for understanding interstellar gas-phase abundances and dust-grain depletions
- Over the past several decades, the THIA group at the University of Toledo has provided secure experimental *f*-values (from lifetime measurements using beam-foil techniques) for commonly observed transitions in P II, Cl I, Cl II, Cu II, Ge II, Sn II, and Pb II.
- These results have improved our understanding of the gas-phase abundances of neutron-capture elements and have clarified the trends exhibited by the depletions of the elements onto interstellar dust grains.
- New experimental *f*-values are needed, especially for Mn II, Ni II, and As II.

ASOS14 - Paris, July 11, 2023